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GROWER SUMMARY 

Headline 

New software is under development to create an accurate 3D thermal profile of a crop with 

the aim of accurately identifying temperature anomalies associated with plant stress.  Early 

developments using data from water stress treatments indicate the potential for this 

approach. 

Background 

Infrared thermometers have been used since the early 80’s to determine the temperature 

differences in plants and different parts of canopy by researchers for irrigation scheduling 

purposes. However, the development of thermal imaging cameras has extended the 

opportunities for more detailed and sensitive analysis of the thermal properties of plants and 

canopies. This has led to the development of different applications including early detection 

of water stress, plant disease and plant phenotyping. One of the major problems associated 

with thermal imaging in plants is temperature variation due to canopy architecture and other 

external factors. Leaf angles, sunlit and shaded regions, environmental conditions and the 

distance of the plant from the camera play a major role in the thermal image of the plants 

under observation. The major aim of this project is therefore to combine analysis of stereo 

visual images with thermal images to overcome these problems and allow a precise 3-

dimensional thermal profile of a crop to be quantified.  This would then help the 

development of an integrated crop scanning system to identify significant temperature 

anomalies, hence providing growers with early warnings of possible crop disease or stress 

problems. 

Summary 

1. An experiment with impatiens where different irrigation treatments were applied (no 

watering, watering to 100% or 80% of previous days water loss) showed that thermal 

imaging could detect water stress in the unwatered treatment which had higher overall 

mean temperature. However, the images collected with the particular thermal camera 

used were not of good enough quality for detailed quantitative analysis. The figure 

below shows the resulting images from the experiment. The top row of plants which 

were watered to 100% previous day water loss appeared to be at the lowest 

temperature. The middle row of plants which were no watered appeared to be at 

highest temperature and the bottom row of plants which were watered to 80% previous 
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day water loss appeared to have temperature in between the temperature of top and 

middle row. 

 

Figure 1: shows impatiens treated with different irrigation treatments. The top row was watered to 100% 

previous day water loss, the middle row was not watered and the bottom row was watered to 80% 

previous day water loss. 

 

2. A new set up was developed to simultaneously capture stereo visual and thermal 

images of plants. Images of an anthurium plant were taken from the cameras at two 

different points horizontally displaced from each other. From the initial experiments it 

was observed that the plant regions which were higher from the ground appear to be 

at a higher temperature and the regions which were at an angle or further away from 

the camera appeared to be at a lower temperature. Quantitative analysis and modeling 

of the effect of height on plant temperature in the thermal image is currently underway 

which will help with the development of a rectified 3D thermal profile of a plant. 

 

Figure 2: 3D reconstruction of plant and overlay of thermal image on the 3D reconstruction. 
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3. A new software application was developed and novel algorithms used to analyse high 

resolution thermal images of a spinach crop exposed to different irrigation regimes 

(image data provided by Ms. Hazel Smith and Prof. Gail Taylor at the University of 

Southampton). Water-stressed treatments had a higher average temperature, higher 

within image temperature variation and a distribution closer to a normal distribution 

compared to non-stressed treatments. The differences in distribution parameters were 

particularly useful in identifying water stressed plants. The figure below shows a 

snapshot of the software along with some initial results of the statistical analysis. The 

results show that the images with different type of treatments can be identified by 

statistically analysing the thermal images. The software is a work in progress and 

algorithm is being enhanced to find a better separation between thermal image of 

plants from different treatments. 

        

Figure 3: A snapshot of the software being developed to statistically analyse the thermal images of 

plants. The results show that the plants from different type of treatments can be separated by statistical 

analysis. 

Financial Benefits 

Financial assessment is premature at this stage, although it is anticipated that stress 

detection in different parts of the crop could help growers to water crops more efficiently and 

detect disease at an early stage facilitating timely action which would mitigate against crop 

losses and some of the costs associated with treatment.  
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Action point for growers 

Glasshouse growers could consider options for installing an overhead system for monitoring 

their crop, pending further developments as this project progresses. The cost for a good 

thermal camera is around £15,000 – 20,000. 
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SCIENCE SECTION 

Introduction 

Thermal imaging was first developed for military purposes but now has been used for a 

wide range of applications in agriculture, industry, civil engineering, aerospace, medicine 

and veterinary. Thermal imaging converts the radiation pattern of an object to visible 

images. Similar to visual cameras, a thermal imaging camera comprises of a detector, 

signal processing unit and an image acquisition system. Since all objects above absolute 

zero temperature emit infrared radiations, for a thermal imaging camera infrared detector is 

used instead of a visible light detector.  

There are two types of detectors used in thermal imaging cameras to detect IR radiation [1], 

thermal and photon detectors. In the thermal detectors, the infrared radiation heats the 

detector element which is taken as a measure of radiation falling on the detector. In photon 

detector, the radiation interacts at atomic or molecular level with the detector material, this 

interaction may involve interaction of photon and an electron, resulting electron to move 

through quantum energy levels and produce charge carriers that generate voltage across 

the detector. The photon detectors are more sensitive than thermal detectors, but they need 

to be cooled down for the electrons to come back to the desired energy levels for 

interaction. Thermal detectors do not require normally cooling, but they are less sensitive 

and provide lower resolution. 

The non-contact and non-destructive nature and repeatability of measurements makes it 

quite useful in agriculture and food industry [2]. Leaf temperature in plants varies depending 

on internal and external factors. The environmental factors which effect leaf temperature via 

stomatal transpiration include solar radiation, air temperature, relative humidity and water 

status of the shoot. Thermal imaging has been used in predicting crop water stress, early 

disease detection in plants, determining genotype and phenotype, predicting fruit yield, 

bruise detection and detection of foreign bodies in food material. Thermal Cameras used by 

the researchers include FLIR systems Thermovision 900LW, Thermacam P25, Thermacam 

PM250, Thermacam SC2000, Varioscan 3201 ST, Infrared solutions Snapshot 225, IR 

Snapshot 525. Impac IVN 770-P is available at University of Warwick and was used in 

some experiments to collect some data. 

In industry, LemnaTec has used infrared imaging combined with visible and fluorescent 

imaging for plant phenotyping [3]. They have developed hardware scanalyzer3D which can 

take 3D visible images of the plants. It can scan the plants using different wavelength which 

include infrared, visible and fluorescent light. Infrared light helps to quantify temperature 

differences within leaves and plants. Plant health, nutrients, senescence and phenotype can 
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be studied using visible light images. Near infrared images are used to determine the water 

content of the soil. Scanalyzer ESC and Scanalyzer HTS have been developed to study 

phenotyping in environmental simulation chambers which take images of the plants using a 

moving camera or a conveyer. The latter is used for small plant phenotyping. Plant 

phenotype depends on the environment and its genome structure. Using the images, plant 

structures such as length, shape are used as features and can be tracked over time to 

determine plant phenotype under different environmental conditions. 

 

Figure 1:Thermal imaging cameras Varioscan 3201(left), IVN 770-P (right) 

 

 

Figure 2: ScanalyzerHTS developed by LemnaTec [3] to study plant phenotyping in simulated environments 

 

In this report a brief review of the work in the field of horticulture with the help of thermal 

imaging is given. Section 2, 3 and 4 give a summary of the work done by various 

researchers with the help of thermal imaging for water stress, irrigation treatments, disease 
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detection, genotyping and phenotyping. Section 5 gives the summary of some existing 

literature on stereo vision in the field of horticulture. Section 6 give a summary of 

experiments conducted for image acquisition. Some of the preliminary results are discussed 

in section 7 of this part of the report.  

Crop Water Stress Detection 

Calculation of thermal Indices 

Under water stress conditions, plants tend to close their stomata, and the transpiration rate 

is reduced. The reduced transpiration rate increases the leaf temperature which can be 

detected using the infrared thermometry or by the use of thermal imagers.  Jones [4], [5] 

rearranged the leaf energy balance equation [6] and used the ‘crop water stress index’ 

(CWSI) [7], [8] to derive thermal indices, in equation (1),(2) and (3), based on ‘wet’ and ‘dry’ 

reference surfaces.  
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where leafT is the surface temperature of the leaf, wetT  and dryT are the surface temperatures 

of wet and dry reference, CWSII is the index analogues to CWSI and rI  and gI are the 

indices proportional to stomatal resistance and stomatal conductance. These new indices 

reduced the sensitivity of the method to environmental variations such as radiation, wind 

speed and air temperature. It was indicated that these reference surfaces must have a time 

constant close to those of real leaves to obtain better results. 

Leinonen et al. [9] have studied and compared three main approaches for the estimation of 

stomatal conductance. The first approach uses the full energy balance equation [7] which 

calculates the stomatal resistance (inverse of stomatal conductance) by using only leaf 

temperature and environmental variables. The approach is prone to the highest probability 

of error because of its dependence on an accurate estimate of the amount of radiation 

absorbed by the leaf. The error can be reduced however, by taking measurements in a 

shaded canopy [10]. The second approach uses a modified energy balance equation [6] 

and uses only a dry reference surface. The analysis in the study shows that the use of dry 

reference is the most consistent and closest to porometer measurements. The third 
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approach uses both the dry and wet reference surfaces to decrease the requirement on the 

meteorological data [4]. The authors recommended using a dry reference instead of wet 

and dry, because it is difficult to maintain a reference leaf wet than to maintain it dry. 

Grant et al. [11] have analyzed the robustness and sensitivity of thermal imaging for 

detecting changes in stomata conductance and leaf water status in plants. They found 

strong correlation between thermal indices [5] and stomatal conductance measured by 

porometry. Under water stressed conditions stomata close and leaf temperature rises. 

Conventional methods are time consuming whereas thermography was found to easily 

detect the temperature rise indicating drying soil. The authors compared precision of 

thermography and conventional water measurement methods in greenhouse conditions to 

provide an empirical assessment of the conditions in which thermal imaging can be reliably 

used against conventional methods. In a later study, Grant et al. [12] suggested that 

average temperature of the canopy was more useful to reduce the effect of leaf angles and 

other environmental factors than the individual leaf temperatures.  

 

Figure 3: Thermal image and the corresponding visible light image is shown [12]. The area of interest is outlined 

to take the average of temperatures of leaves oriented at different angles. 

 

The ambiguous assumptions in wetting leaves and inaccuracies in calculation of stomatal 

resistance were studied by Guilioni et al. [13]. According to the authors, the relationship 

between the leaf stomatal resistance, leaf temperature and temperature of two reference 

leaves varies according to type of leaf and the way in which the reference surfaces are 

wetted. The authors have given a table to clarify the ambiguities between these 

relationships, to select the relationship for different types of leaves, and to correct some 

erroneous expression in some earlier studies [4], [5], [9]. 

Temperature variation within canopies 

Jones et al. [10] compared techniques for image acquisition and performed experiments to 

investigate the potential of infrared thermography for irrigation scheduling and to evaluate 
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the consistency and repeatability of measurements under a range of environmental 

conditions. Before the use of infrared imaging, infrared thermometers have been used for 

the thermal studies of the plants, infrared thermometers take an average over the target 

area and their measurements are likely to include non-transpiring tissues and extraneous 

surfaces (soil and sky) in their measurements. In an earlier study, Fuchs [14] concluded in 

his experiments that variance of leaf temperature (measured by infrared thermometer) gives 

a better estimate of leaf temperature than the average value. This limit does not apply to 

infrared imaging, since the temperature of the non-interested regions can be excluded from 

measurements. Jones et al [10], suggested to use wet and dry reference surfaces and to 

exclude any pixels which are outside the wet-dry threshold range to allow for semi-

automated analysis of a large area of canopy. Temperature distribution between shaded 

and sunlit canopies was observed, sunlit canopies showed a wider range of temperature 

than the shaded canopies.  

 

Figure 4: The shaded and sunlit sides (left) and the temperature frequency distributions for the outlined areas 

(right) [10]. 

However, the study of the variability was found to be dependent on scale of viewing, 

because large pixel size averages the leaf temperatures of different regions and therefore, 

an underestimate of true variability. Leaf temperature is more sensitive to stomatal 

conductance in sunlit leaves; it might seem that thermal data from sunlit leaves give a better 

estimation of stomatal conductance. However, the authors suggested using thermal data 

from shaded leaves with improved data consistency, since there is less variability in 

temperature within an image and smaller errors resulting from differences in radiation 

absorbed by reference and transpiring shaded leaves. They concluded from their 

experiments that canopy temperatures including the wet and dry references were 

dependent on crop water stress. Variation coefficients  of stress indices [7] were found to be 

of considerable importance and discriminatory powers of the techniques for estimates of 

stomatal conductance were found to be limited. However, it was recommended that thermal 

imaging has great potential for comparative studies. 
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Visible imaging in stress detection 

Möller et al. [15] studied the use of thermal and visible imaging to maintain mild to moderate 

water stress levels in grapevine. To estimate the canopy temperature different sections of 

the canopy were used in this study which includes all canopy, sunlit canopy, center of 

canopy, sunlit leaves from center of canopy. Best correlation between CWSI and leaf 

conductance was observed from the center of the canopy measurements (or its sunlit 

fraction). They observed a variation in slope between CWSI and stem water potential 

relationship with steeper slope observed in late summer. However, CWSI and leaf 

conductance relationship were found to be stable over time. This behavior shows an 

adjustment in plant response to higher leaf conductance during the summer while stem 

water potential remains the same. The authors studied the variance of canopy temperature 

and their relationship to crop water stress index as suggested by Fuchs [14]. They observed 

this relationship to be weak and statistically insignificant. They concluded from their 

experiments that Fuchs method might apply to homogeneous crops but not appropriate for 

row crops. They observed that CWSI computed with wet and dry reference was the most 

robust index and suggested that the fusion of thermal and visible imaging can not only 

improve the accuracy of remote CWSI determination but can also provide precise data on 

water status and stomatal conductance of grapevine. 
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Figure 5: Use of thermal and visible images to extract different parts of canopy [15]. 

 

Leinonen & Jones [16] have used thermal imaging as a tool to identify plant stress. They 

combined thermal and visual images to identify leaf area and sunlit and shaded parts of the 

canopy. They used vaseline-covered and water-sprayed plants as dry and wet reference 

surfaces to reduce the effect of other environmental factors, which affect the canopy 

temperature, in calculations. They calculated the thermal indices [5] for single Vicia faba 

plants. These thermal indices were then compared with the stomatal conductance of the 

plants to quantify the relationship between temperature variation and stomatal conductance. 

As an initial preprocessing step, images of constant temperature background were 

subtracted from the actual image to correct for relative errors in calibration of camera 

caused by internal warming of camera. Ground Control Points (GCPs) were manually 

selected to overlay the thermal image on the visual image. Leaves in the visible images 

were manually identified as Regions of Interest (ROIs) for classification purpose to 

determine temperature distribution and to separate sunlit and shaded regions. The 
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temperature distribution can be used as an indicator of stomatal conductance and plant 

stress. Stoll and Jones [17] believed that the sunlit leaves show a wider range of 

temperature because natural leaf orientation has little effect on energy balance of shaded 

leaf, but large effect on exposed leaves. Based on these observations the leaf orientation 

temperature distribution varies in sunlit leaves and temperature distribution can be 

combined with the leaf orientation for thermal analysis in high resolution images. 

Disease Detection 

Thermal imaging has potential for early detection of disease, especially when the disease 

directly affects transpiration rate in plants, which is very important to control the spread of 

disease since late detection may result in reducing the quantity and quality of crop yield 

[18].   

Salicylic Acid (SA) accumulation 

Salicylic Acid (SA) is produced as a defense signal against pathogens in plants which 

induces metabolic heating and when applied exogenously to nonthermogenic plants 

increases leaf temperature. Chaerle et al. [19] studied the resistant tobacco plant infected 

with tobacco mosaic virus (TMV) and detected that the infected sites were 0.3-0.4°C 

warmer than the surrounding tissue 8  1h before the initial appearance of the necrotic 

lesions. They used a localized-infection method and a high-resolution infrared camera to 

detect temperature increase at the site of inoculation. No measureable local or global 

change in leaf temperature was detected for near-isogenic but susceptible tobacco plants. 

They observed a correlation between leaf temperature and transpiration by thermography 

and steady-state porometry. 

Study of cell death propagation 

In a later study, Chaerle et al. [20] studied the propagating cell death in bacterio-opsin 

transgenic tobacco plants. They found that the cell death was trailed by coherent front of 

higher temperature. These spreading fronts were observed more in younger leaves, 

whereas isolated lesions were observed in older leaves. Cell death was first visible close to 

mid vein starting at the leaf base and subsequently, spread sideways and towards the leaf 

tip. Lower temperature was observed at regions with visible cell death because of water 

evaporation from the damaged cells. It was observed that the stomatal closure preceded 

the tissue collapse. They obtained high resolution thermographic images by capturing 

several slightly overlapping images and then registering them. The subimages were 

visualized within a temperature window of 1 °C, to maximize the temperature contrast. 
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Fluorescence imaging in disease detection 

Chaerle et al. [21] have studied the use of thermal and chlorophyll fluorescence imaging in 

pre-symptomatic reponses for diagnosis of different diseases and to predict plant growth. 

Fluorescence imaging can be used at subcellular resolution but it is difficult to apply it to 

plant canopies outdoors. Thermal imaging can be applied to outdoor measurements at large 

scale but resolution is of the order of mm2. However, both of these imaging methods can be 

applied for detecting and diagnosing plant stresses. Conventional weight loss and gas 

exchange measurement methods are time consuming and suitable for small number of 

plants whereas imaging techniques can be used to screen large number of plants for biotic, 

abiotic stress and to predict the crop growth. 

Maximum Temperature Difference (MTD) 

Oerke et al. [22] studied the changes in metabolic processes and transpiration rate within 

cucumber leaves caused by pathogenesis of Pseudoperonospora cubensis. Under 

controlled conditions, a linear relation was found between transpiration rate and leaf 

temperature. They showed that healthy and infected leaves can be discriminated even 

before the visible symptoms of the downy mildew (caused by Pseudoperonospora 

cubensis) appear. The maximum temperature difference (MTD) [23] was found to be related 

to the severity of infection and could be used for the discrimination of healthy leaves or 

canopies and those with downy mildew. Conditions enhancing transpiration rate improved 

the detection of these changes at an early stage of infection. 

 

Figure 6: Symptoms of downy mildew appear as zones of different temperatures on cucumber leaves 7 days 

after inoculation with Pseudoperonospora cubensis [22]. 

Analysis of diseased plants with different irrigation treatments 

Stoll et al. [24] have investigated the use of infrared thermography to study the attack of 

Plasmopara viticola in grape vine leaves under varying water status conditions. They 

applied and studied different irrigation treatments for both inoculated and non-inoculated 
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vines. They observed that there were statistically significant differences between slopes of 

regression when comparing inoculated and non-inoculated treatments, whereas no 

statistically significant difference were observed when irrigated and non-irrigated treatments 

were compared. 

Phenotyping 

Jones et al. [25] explored the potential of thermal imaging for crop phenotyping and 

irrigation management purposes from single leaves in controlled environments to canopies 

in large fields. The authors studied the variation of leaf and canopy temperature as a 

function of radiant energy absorbed by the leaves. They studied the reflectance effect on 

the leaves as the view angles changes relative to incident solar light and how it affects the 

average leaf temperature observed by the imaging equipment. Temperature differences 

between areas of canopy corresponding to different irrigation treatments and phenotypes 

were studied. Temperature difference succeeded in identifying individual plots with different 

genotypes. 

 

Figure 7: Visible light image, with corresponding thermal images, of a rice ‘macro array’ trial in the dry season of 

2006 consisting of 300 plots combining 50 contrasting genotypes, two water treatments (well watered and 

drought stressed) and three replicates at the International Rice Research Institute [25]. 

 

Merolet et al. [26] investigated the effectiveness of thermal imaging for high through-put 

screening of Arabidopsis mutants defective in stomatal regulation. Altered stomatal control 

affects transpiration which can be detected as a change in leaf temperature. Plants 

synthesize Abscisic acid (ABA) hormone to trigger closure of stomatal pores. The authors 

observed that the leaf temperature of wild type plants was high after 3 days of drought 

stress, whereas ABA-insensitive and ABA-deficient mutants failed to close their stomata 
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and were colder. The amount of ABA present in the leaves was quantified to identify for 

ABA-insensitive mutants and ABA-deficient mutants. 

Stereoscopy 

The effect of leaf angles and the distance of the plant from the thermal image sensor has 

been studied by various researchers [25], [12]. Grant et al. [12] suggested to take average 

temperature of the canopy to reduce the effect of leaf angles. However, there is very little 

literature on the quantitative analysis of effect of angles of an object on its thermal profile 

[27]. Stereoscopy is a technique which can be used to estimate 3D depth of points in a 

scene by finding matching pixels corresponding to these points from two or more 2-

dimensional images. The simplest setup used for stereovision is the parallel camera setup 

which uses two identical cameras on a horizontal plane with parallel vertical and optical axis 

as shown in Figure 8. For this setup, correspondence between the points in the images is in 

the form of relative displacements or disparities. The following section in the report 

discusses some of the existing literature to estimate disparity in stereo vision. 

 

Figure 8: Parallel camera setup Model [28]. (x1, y1) and (x2, y2) are the pixel locations on which the world point 

is projected. s is the seperation distance between the cameras. h* is the distance of the object point from the 

camera [28]. 

Disparity Estimation for Stereo Vision 

Most stereo vision algorithms compute disparity with respect to a reference image which 

could be one of the input images. The main challenges involved in the disparity estimation 

include noise, textureless areas, depth discontinuities, non-Lambertian surfaces and 
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occlusions. A lot of work has been done by researchers [29] to meet these challenges and 

different techniques have been proposed which can be categorized into feature based, 

window based and energy based approaches [30]. Feature based approaches are fast and 

give accurate estimation of the measure of correspondence between the points in images, 

however they suffer a major drawback that they produce sparse disparity results. Window 

based approaches use intensity values within a finite window and can have very efficient 

implementations that are suitable for real time applications. However, these methods 

assume constant disparities within a window, which is incorrect at discontinuities and leads 

to blurred object boundaries. Energy based approach make explicit smoothness 

assumptions and solves energy optimization problems. These approaches produce dense 

disparity maps however they are computationally and memory intensive. 

Fua [31] has presented an approach based on correlation to compute dense depth maps 

and preserve depth discontinuities in real world scenes. The author has designed the 

algorithm to perform a consistency check to reject invalid matches. The validity criterion 

proposed by the author is based on a right/left match in which the two images play a 

symmetric role and that allows to reliably use small windows. The algorithm performs the 

correlation twice by reversing the role of the two images and consider as valid only those 

matches for which depth measured is same for corresponding points. A hierarchical 

approach has been used i.e., use windows of a fixed size to perform the matching at 

several levels of resolution. To introduce depth discontinuities, the method uses 

interpolation technique by combining the depth map and the grey level information in the 

image. 

Birchfield & Tomasi [32] have introduced a measure of dissimilarity which according to the 

authors is insensitive to sampling. To compute dissimilarity between the pixels the method 

uses the linearly interpolated neighbouring intensity pixels and the absolute difference. The 

authors have shown that the dissimilarity measure works as long as there is no high 

frequency signal present in the intensity function. But they have shown with experiments 

that it still works better than absolute difference for high frequencies. 

Konolige [33] has discussed the implementation of the area correlation-based stereo 

algorithms for real-time applications. Area correlation methods usually attempt to 

compensate by correlating not the raw intensity images, but some transform of the 

intensities e.g., Normalized intensities, Laplacian of Gaussian or nonparametric 

transformation. The author suggests that the best quality results appear to come from 

absolute difference of the LoG, and from census [34]. The suggested algorithm comprises 

of the following steps: 

1. Prefiltering using LoG transform to normalize image brightness and enhance texture. 

2. Correspondence search along horizontal epipolar lines using a SAD window. 
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3. Postfiltering with an interest operator and left/right check to eliminate bad matches. 

Since, textureless regions give less reliable measure of disparity than the textured regions, 

the last step uses measure of texture in a scene as an interest operator which gives high 

confidence to areas that are textured in intensity. 

Scharstein and Szeliski [29] have built a standard dataset with ground truth disparity 

estimate and have classified and evaluated different correspondence algorithms on this 

dataset. According to the analysis done by the authors, stereo correspondence algorithms 

generally perform four steps which include cost computation, cost aggregation, disparity 

estimation and disparity refinement. The common matching costs include squared 

differences, absolute differences, mean square error, mean absolute difference. Local and 

window-based approaches aggregate the matching cost by summing, averaging or by using 

weighted values of neighboring pixels within a support region defined by the algorithm. Final 

estimated disparity is then the disparity associated with the minimum cost value. Some 

algorithms apply a sub-pixel refinement step using splines and other interpolation 

techniques. 

Klaus et al. [35] have presented a segment-based stereo matching approach. The algorithm 

utilizes colour segmentation on the reference image and instead of assigning a disparity 

value to each pixel, a disparity plane is assigned to each segment. Segment-based 

methods generally perform four consecutive steps. First, regions of homogeneous colour 

are located by applying a colour segmentation method. Second, a local window-based 

matching method is used to determine disparities of reliable points. Third, a plane fitting 

technique is applied to obtain disparity planes that are considered as a label set. Fourth, an 

optimal disparity plane assignment (optimal labelling) is approximated using greedy or 

graph cuts optimization. Mean-shift colour segmentation has been used by the authors 

because it has the advantage that edge information is also incorporated. The approach 

uses a weighed combination of absolute intensity differences and a gradient based 

measure. An optimal weighting ω between absolute differences and gradient measure is 

determined by maximizing the number of reliable correspondences by applying a left/right in 

conjunction with a winner-take-all optimization (choosing the disparity with the lowest 

matching cost). A matching cost is calculated in a segment to plane assignment and 

disparity plane with minimum matching cost is assigned to each segment. 

Kim et al. [36] have approximated mutual information to a standard energy minimization 

problem. Comparing fixed-size windows via mutual information suffers from poor 

performance at discontinuities and in low-texture regions. The key advantage of mutual 

information is its ability to easily handle complex relationships between the intensities in the 

two images. The authors have exploited this advantage of mutual information by converting 

mutual information to an energy minimization problem using Taylor series approximation. 
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The energy can then be efficiently minimized using graph cuts, which preserve 

discontinuities and handle low-texture regions. The resulting algorithm combines the 

accurate disparity maps that come from graph cuts with the tolerance for intensity changes 

that comes from mutual information. 

Hirschmüller [37] has introduced a semi global matching based on the work done by Kim et 

al. [36]. The method uses a hierarchical approach to perform pixelwise matching of Mutual 

Information and approximates a global smoothness function. The first step is the 

hierarchical pixelwise disparity estimation to obtain a disparity image. The second step adds 

a smoothness constraint which penalizes for the changes in neighbouring disparities in the 

disparity image. For small changes, small constant penalty is added whereas for large 

changes large constant penalty is added. This allows adaptation to curved surfaces as well 

as to discontinuities. The author has extended his work in [38] for disparity refinement and 

for processing huge images. The refinement step removes small patches of disparity which 

appear as peaks, which leads to holes in the disparity image. In this work, invalid disparities 

have been classified into occlusions and mismatches using left/right consistency check. 

Occlusions have not been interpolated but mismatches have been interpolated from 

neighbouring pixels to produce dense disparity map. Image segmentation using Mean Shift 

Segmentation algorithm and plane fitting has been used for refining initial disparity image. 

To process huge images a solution is proposed to divide the image into tiles and compute 

the disparity of each tile individually. The method has been evaluated with Middlebury 

stereo dataset and has been shown to perform superior to other methods. 

In another work Hirschmüller & Scharstein [39] have evaluated the insensitivity of different 

matching cost functions to radiometric variations. Radiometric differences can be caused by 

cameras due to different settings e.g., vignetting, image noise or reflection due to non-

Lambertian surfaces. The authors produced image sets with artificial radiometric variations 

and evaluated different cost functions using three stereo algorithms, window based, semi-

global and Graph cuts methods. The authors concluded that the performance of a matching 

cost function depends on the stereo method that uses it. Rank filter appears to be the best 

matching cost for correlation based methods. Hierarchical Mutual Information (HMI) [37] 

appears to be best for pixel-based matching methods like Semi-Global Matching and Graph 

Cuts in the presence of global brightness changes and noise. In the case of local brightness 

variations such as vignetting; Rank and LoG appear to be better alternatives than HMI. 

However, none of the matching costs compared in this study were very successful at 

handling strong local radiometric changes caused by changing the location of the light 

sources. The authors extended the work in [40] and have included more cost functions to 

their evaluation study. The results on images without radiometric changes show that 

Bilateral filtering with background subtraction and Census filtering produce best results with 



 Agriculture and Horticulture Development Board 2012. All rights reserved                      19 

 

three stereo methods. HMI works equally well for global and semi global method on some 

data sets. When tested with images with simulated radiometric changes, Census appears to 

be more robust and best in many cases. HMI is more stable to image noise but it performs 

worst on images with local changes like strong vignetting. Census performed very well 

throughout all experiments with simulated and real radiometric differences, except in the 

presence of strong image noise. HMI compensates for complex global radiometric relations 

between the input images. It performed slightly better than Census in case of low 

radiometric changes and pixelwise matching using the semiglobal or global stereo method. 

It also performed best in case of strong image noise. However, HMI showed problems with 

large local radiometric differences, caused, for example, by the vignetting effect and by non-

Lambertian surfaces and lighting changes. 

Song et al. [28], [41] have introduced a multi-resolution approach for surface modelling of 

plants. The author has used matching cost function introduced by Birchfield & Tomasi [32] 

for each colour channel to compute disparity. A Gaussian pyramid scheme has been used 

to speed up matching each level represented as nodes. To prevent the propagation of poor 

results from false matches to parent nodes, a weighing method is applied which takes 

weighed input from the neighbouring parent nodes.  Kalman update is applied to the nodes 

at each level and the disparities estimated are converted into depths by triangulation. 

Stereoscopy in Plant Imaging 

Stereo vision can be used to automate quality estimation of plants such as pansy and 

poinsettia which are characterized by a number of attributes. Song et al. [41] have used 

stereo vision to model the important characteristics of plants. The authors used a multi-

resolution strategy as discussed above for disparity estimation and self-organizing maps to 

model the plant surface. The model can be used to extract useful plant features which can 

be used for industry application such as crop scheduling and plant growth management. 

Parsons et al. [42] have used the technique [41] for quality assessment of ornamental crops 

in glasshouses. The manual measurement and visual inspection of which is highly labor-

intensive. The authors have used the colour information and Artificial Neural Networks to 

obtain quality scores for dianthus, viola and cyclamen. They have compared quality scores 

obtained from image analysis with the quality scores obtained from a panel of assessors. 

They found that the image analysis quality scores were more reliable than the panel scores. 

The authors further stated that these image analysis methods can be combined with the 

additional sensors to detect localized pests and disease. 

In a latter work, Song et al. [43] presented an approach to combine stereo vision with Time-

of-Flight (ToF) images to estimate depth maps for plant phenotyping. Time-of-Flight 

cameras use speed of light to generate a coarse resolution image representing the distance 
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of an object. The authors have shown that stereo vision when combined with ToF images 

give a better estimate of the depth map and can be used to automatically estimate 

phenotypic characteristics such as leaf area stem length or fruit size. 

 

Figure 9: Surface reconstruction for Leaf using depth estimates by combining stereo and ToF results [43] 

Materials and methods 

Image Acquisition Experiments 

An experiment was setup to collect thermal images at the Wellsbourne campus at 

University of Warwick with the help of Dr. Andrew Thompson. Figure 10 shows the 

experimental setup used to collect the images of impatiens with different irrigation 

treatments.  

 

Figure 10: Experimental Setup to collect images of impatiens with different irrigation treatments 
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In this experiment, three types of irrigation treatments were applied to impatiens.  In 

treatment 1, plants were watered equal to the amount of water they lost previous day, in 

treatment 2 plants were watered equal to 80% of water lost previous day, and treatment 3 

plants were not watered at all. After 5 days of different irrigation treatments temperature 

differences appeared in the thermal images. Plants treated with different treatments were 

observed to be at different temperatures as shown in Figure 11. In the top row in Figure 11 

are the plants which were watered to their field capacity every day and they show a lower 

temperature, the plants in the bottom row were treated with treatment2 and show higher 

temperature than the top row, the plants in the middle row were treated with treatment 3 

and show the highest degree of temperature in the whole image. However, the images 

collected by the help of the thermal camera were not of very good quality. 

 

Figure 11: shows impatiens treated with different irrigation treatments. The top row was treated with treatment 

1, the middle row with treatment 3 and the bottom row with treatment 2. 

 

A setup is being developed at Computer Science Department to simultaneously capture 

stereo visual and thermal images of the plants. A camera can be mounted on a movable 

platform which can be used to take two (or more) pictures of a scene from horizontally 

displaced positions. A picture of the setup is shown in Figure 12. The setup is in 

development phase and experiments are being carried out to make accurate measurements 

of the depth from the images. In our experiment, we horizontally displace the camera in 

small steps and take images of different plants (or test objects) at each step. Manual 

measurement of the height is taken and the algorithm is tested to estimate the actual height. 

Results of the disparity estimate along with a thermal overlay are shown in preliminary 

results. 
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Some good quality thermal and visual images were also collected by our collaborators 

Hazel Smith and Gail Taylor at the University of Southampton and these images were used 

for further analysis.  

 

Figure 12: Setup to capture stereo and thermal Image 

Preliminary Results 

Stereo Setup 

Images of an anthurium plant were taken from a camera at two different points horizontally 

displaced from each other. The images taken from left and right camera position are shown 

in cyan and red color in Figure 13. A disparity map overlaid on the plant image is shown in 

Figure 14. Figure 15 shows disparity overlaid on plant image and on thermal image. It has 

been observed that the regions of the plant which are higher from the ground and thus have 

more disparity, show higher temperature whereas plant regions which are at a lower height 

or at an angle show lower temperature. The quantitative analysis of the height variation to 

plant temperature is in progress. 
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Figure 13: Images of the same plant captured from two different positions. Image taken from right is shown in 

red and image taken from left is shown in cyan color. 

 

Figure 14: Overlay of disparity on plant image 

 

Figure 15: 3D reconstruction of a plant image and overlay of thermal image on dispartity. 
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Drought Experiment 

Images of a spinach canopy from a drought experiment were obtained from the 

collaborators at University of Southampton. The images from well-watered canopy were 

termed as treatment A and the images from plants under water stress were called treatment 

B images. Some of the images of crop with two different treatments along with their 

histogram are shown in Figure 16 and Figure 17 below. In the images of crop with treatment 

A lower average temperature, less temperature variation within image and more skewed 

distribution was observed as shown in Figure 16. In the images with treatment B, higher 

average temperature, higher within image temperature variation and distribution close to 

normal distribution was observed as shown in Figure 17. Based on these observations 

some experiments were carried out on the images belonging to both the treatments. 

In one of the experiments, all the thermal images were divided into twelve sub-images (3 

rows and 4 columns) and the mean of the intensity values was calculated for each sub-

image. Standard Deviation among the mean values was calculated and plotted against 

mean of intensity values of the whole image; the result is shown in Figure 18. 

 

 

Figure 16: shows crop images with treatment A, more uniform temperature distribution was observed in the 

image and the histogram of the images with this type of treatment were observed to be skewed. 
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Figure 17: shows crop images with treatment B, discrete zones with different temperature were observed in the 

image and the distribution was close to a normal distribution. 

 

In Figure 18, the blue circles show the points from images belonging to treatment A, and the 

red circles show the points belonging to images from treatment B. From the plot it was 

observed that images from both treatments can be separated on the basis of the standard 

deviation among the mean values of the sub-images. 

 

 

Figure 18: The plot shows mean of intensity values of whole image on x-axis and standard deviation among 

mean values of blocks on y-axis. 

 

The distribution was also compared with generalized extreme value distribution and 

maximum likelihood estimates of the parameters for mean, standard deviation and shape 

parameter for the distribution were obtained. The results obtained were plotted on a 3D plot 
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as shown in Figure 19. The plot shows that the images from the two treatments can be 

separated on the basis of parameter estimates of the distribution. 

 

Figure 19: Parameter estimates of the distribution of the images with different treatments. Blue circles belong to 

treatment A and red asterisk belong to data of images from treatment B. 

 

Since, the data was limited for the above experiment, more data was artificially generated 

by dividing each image into 12 sub-images (generating 144 images, 72 for each treatment) 

for analysis. The parameter estimates are plotted in Figure 20 which show that the images 

from different treatments can be separated on the basis of these parameter estimates of 

distribution. 

 

Figure 20: Parameter estimates of the distribution for artificially generated large dataset of images. Blue circles 

belong to treatment A and red asterisk belong to treatment B. 
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Software 

Software with a graphical user interface has been developed to statistically analyze spinach 

data. A snapshot of the software is shown in Figure 21. 

 

Figure 21 

 

 

Figure 21: Snapshot of the Software for analysis, watch video at http://youtu.be/aubBgRDPOaM 

 

The software takes images from treatment A and treatment B as input. Treatment A and B 

images are not restricted to this drought experiment and can be from any experiment with 

two different types of treatments.  The software plots a scatter plot of the statistical 
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parameters of the thermal images. The user can select the statistical parameters of interest. 

If the user is interested in any point on the plot, the user can view the image corresponding 

to that point by clicking the point in the plot, making analysis easier. The software can be 

used to divide the image into a grid of sub images, to make analysis on specific part of 

image. The software can also be used to apply color threshold and can use Principal 

Component Analysis to generate uncorrelated data. 

A video presentation of the software operation can also be viewed at the link below1. 

Liaison with the commercial growers 

To better understand industry requirement and the challenges they face it is important to 

interact with them. Following visits were made to the following Nurseries/Conferences 

during the year 2011/2012. 

Date Place Purpose 

7 Jul 2011 
BordonHill 

Nursery 

Discussed options with the nursery to install stereo and 

thermal imaging setup 

9 Nov 2011 
Roundstone 

Nurseries 

Attended BPOA Poinsettia meeting and Grosouth trade 

exhibition 

17 Jan 2012 
Warwick Crop 

Center 

Presented the potential of thermal imaging for the benefit 

of growers and some initial results. 

06 Feb 2012 
Hellidon Lakes 

Hotel Leicester 
Attended BPOA AGM and Technical Seminar 

 

Conclusions and Future Work 

Our preliminary results on thermal data with water stress experiments suggest that thermal 

imaging can be a useful tool to remotely detect and monitor physiological changes in plants. 

In the literature review section, it has been observed that leaf angles, sunlit and shaded 

regions and environmental conditions can also play a major role in the thermal image of the 

plants under observation. There is currently disagreement among researchers on whether 

to use thermal data from shaded or sunlit regions of the canopy because in shaded regions 

thermal data has been found to be more consistent whereas in sunlit regions more 

variability has been found in the data. There is also some disagreement on using average 

or variation in the thermal data as a measure of crop water stress. It would be useful to 

investigate on these issues on which the researchers disagree. 

In particular, the following issues will be addressed in the next 6-12 months: 

                                                 

1 http://youtu.be/aubBgRDPOaM 
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1. The line of action would be to collect more good quality thermal and visual image 

data, create a depth map of the plant/object under observation, and then overlay the 

thermal data on the 3D model. From the depth map, the leaf angles can be 

calculated and the intensity of pixels in the thermal image can be recalibrated for 

further investigation since the intensity of pixels in the thermal image depends on the 

leaf angles.  

2. For acquisition of good quality images, the camera needs to be fixed on a frame to 

collect data from plants under same conditions. The existing thermal camera does 

not have a high thermal and spatial resolution and it has a very limited field of view 

which means the camera has to be mounted high above the plant to collect good 

quality thermal of the whole plant surface. An application for an internal Research 

Development Fund (RDF) award to buy a new thermal image camera was been 

made in May. The proposed thermal camera FLIR P620 will have higher spatial and 

thermal resolution i.e., 0.65mrad and 640x480. The integrated (3.2 MP) visual 

camera will help to make the analysis fast and more accurate. 

3. In our experiments with the Southampton data, the images were divided into several 

sub-images to create a dataset for analysis. For further analysis, more good quality 

data and deeper analysis of the temperature distribution is required. We are working 

in close collaboration with the University of Southampton to get hold of their 

reasonably good quality data for the water stress experiments. We envisage that our 

model and the algorithms developed for various different water stress treatments will 

be directly applicable to disease versus normal, since a diseased plant will show 

signs of increased temperature distribution similar to a plant undergoing water 

stress. An experiment for validating our model and algorithms for disease detection 

and monitoring is being set up at the Warwick Crop Centre with the help of Dr John 

Clarkson to collect some more data for powdery mildew in tomato. 

4. A visit to Double H nurseries has been made during the HDC conference in July and 

options to install a thermal and stereo imaging setup have been discussed. Whole 

canopy images will be collected after the camera setup is installed at the nursery. 
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